Introduction of ATC technology center and presentation of ATC as a model of service: synergy between different actors on additive manufacturing

ADDITIVE TECHNOLOGY CENTER Francesco Stortiero

PARTNERED BY

francesco.stortiero@atc-additive.com

Technical Director

francesco.stortiero@gfmspa.com

DMGMORI SFM Itema

ATC Origins and GFM Role

Directional Site – Mapello (BG), Italy

Production Plant – Nembro (BG), Italy

ATC Origins and GFM Role: What We Do

MACHINING – BUILD TO PRINT

COMPRESSOR PARTS (Disks, Rings, Oil Seal Rings, Bearings, Diffusers, Dumping elements) TURBINE PARTS (Seal rings, Disks, Cover plates, Guide rings, shaft gland)

ATC Origins and GFM Role: What We Do

STAMPING, CUTTING, FORMING & METAL FABRICATION – BUILD TO PRINT

LOCKING AND SEAL PLATES, SEAL STRIPS

ATC Origins and GFM Role: What We Do

MACHINING + ASSEMBLY AERODERIVATIVE GAS TURBINE

ASSEMBLY OF COMPLETE ROTOR

ATC: Needs & Opportunities

Needs

Opportunities

Introduce new manufacturing capacity

Support Customers in new development program

DMG MORI

Dissemination on their own Additive Manufacturing Technology

Market Expansion of Additive Manufacturing

itema

Evaluation of Additive Manufacturing Technology for new product design

Spare Parts production & Time to market reduction

PARTNERED BY

ATC: Role & Competences

time

Gap Reduction from Idea to Serie Production by Knowledge and Training to promote the

ATC: Technologies & Materials

	Lasertec 65 3D Hybrid	Lasertec 30 SLM (2)	DMU 50
Technology	Hybrid: Additive + Subtractive	Powder Bed Fusion	5-axis Milling Machine
Working Volume	Diameter 500mm x 350 mm	300mm x 300mm x 300mm	Diameter 450mm x 300mm
Materials	All Weldability alloys & more	Steels/Alluminum/Titanium/ Superalloys	Metallic & Polymeric Materials
Materials in ATC	AISI 316L	AISI 316L	
	Maraging 300	Inconel 718 (Hastelloy x)	
	Hastelloy X	AlSi10Mg	

C

ATC: Metallurgical & Test Lab

	Sample Preparation	Optical Observation	Micro Hardness Test	Mechanical Test
Technology	Cutting and Polishing	Inverted Optical Microscope	Micro Hardness	Material Testing Machine
Capability	Up to 150mm	25X -200X	ASTM E-387, EN ISO 6507, EN ISO 4545	100KN
Materials	Any	Any	Metallic	Metallic & Polymeric Materials
Software	N/A	HD Camera + Imaging software	Automatic Stress Profile Reconstruction	
Samples	Any	Any	Any	

ATC: Attivities&Services

Training/Counseling

COST ANALISYS

CO-ENGINEERING

PROCESS DEVELOPMENT & OPTIMIZATION

FEASIBILTY STUDIES & PROTOTYPES

PROCESS VALIDATION

TRAINING

ATC at glance

ATC: Feasibility Study

CO-ENGINEERING

- Technical Advising to Design for Additive Manufacturing (DFAM)
- Support to modification of geometry and components
- Materials & Processes Selection

FEASIBILITY STUDY & PROTOTYPING

- Feasibility Study of Component Manufacturing
- Prototyping
- Verification of geometrical and mechanical requirements

COST ANALYSIS

Cost Analysis and Evaluation of Business Case

Time Scale: 1 – 3Months Costs: Depends on Project

ATC: Feasibility Case Study

Mold Insert

Problem

High Wear Rate

Traditional Design with 90° Holes made by Drilling

Courtesy of Costampgroup

Solution

Improve Cooling Efficiency

DFAM of Cooling Conformal Channels

ATC: Re Design for DED Additive Manufacturing

Channels Geometry Classification

ATC: DFAM of Conformal Channels

Section	Tipologia	Dimension
А	Circular	Ø 5 mm
В	Elipse	5.5 x 3.2 mm
С	Circular	Ø 4.2 mm
D	Elipse	5.8 x 3 mm

DETAILA SCALE 5:1

DETAIL B SCALE 5:1

3,2

22

DETAIL D SCALE 5:1

4,316

Sample Test for Evaluation of Conformal Channels Design

ATC Case Study: Mold Insert Prototyping

ATC Case Study: Cost Analisys

ATC: Process Development & Optimization

CO-ENGINEERING

FEASIBILITY STUDY & PROTOTYPING

COST ANALYSIS

PROCESS DEVELOPMENT & OPTIMIZATION

- Identification of suitable process for the manufacturing of component
- Verify of Reliability of the Process by Pre-Serie Production
- Definition and Optimization of all Production Steps up to Post processing

PROCESS VALIDATION

Process Validation by Functional Test of Component or by **Destructive Tests**

Time Scale: 3-6 Months Costs: Depends on Project

Holder for Automatic Sampling for COVID Test Redesign Gripper with higher stiffness and easy to handle approach

Solution

Easy to Handle Approach needs to reduce interfere with tolerances control

⊡+Ū

SLM Process Calibration to reduce the interfere and maintain the maximum allowance

Covmatic is an open-source, high throughput system for COVID-19 testing. It is developed by a team of <u>volunteers and partner organizations</u> in Italy. This technology is <u>freely available</u> to all the labs in the world who need to efficiently scale testing.

The system consists of 10 liquid handling robots and 3 qPCR machines, overseen by a cloud-based control software. Each patient sample is automatically tracked through its barcode. The system generates and stores digital records, to comply with regulatory standards.

Learn more on www.covmatic.org

Corporate Partners

Porsche Consulting Multiply Labs Transearch Crispy Bacon WeMake <u>ATC Additive</u> ABB IBM Benchling OpenDot OpenTrons

Academic Partners

Politecnico di Milano Universitá degli Studi di Milano IIT

Association Partners

Rotary International

- Training on the Additive Technology by dedicated Courses
- Training on the job, following all the stages of the development project
- Delivery of "Recipe" for a serie-production

CUSTODIAN

Customized photonics devices for defectless laser-based manufacturing

www.shapeyourlaser.eu

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant

agreement nº 825103. CUSTODIAN project is an initiative of the Photonics Public Private Partnership.

Partners

10 entities focused on industrial laser manufacturing 28

ADDITIVE TECHNOLOGY CENTER

Custodian

The Project

The project aims to **develop a new and disruptive methodology** of applicationdriven laser beam tailoring of the material microstructure, and deploy this beam:

to solve hot cracking in Laser Beam
Powder Bed Fusion (PBF-LB/M)
and to increase quality and
productivity in laser beam welding
(LBW) and laser cutting

Impact

By achieving the CUSTODIAN main objectives:

- between 95-98% of defects will be eliminated in LBW/PBF-LB/M parts,

leading to production time decrease
 respect to the traditional manufacturing
 in 70% (LBW) and 83% (PBF-LB/M)

while reducing the total costs in 20%(LBW) and 60% (PBF-LB/M)

- and taking Laser Cutting to a higher performance level

Automotive industry

Produce thinner walls with LBW of austenitic steel leads

to 25% of weight reduction in exhaust system.

Aerospace sector

Avoid cracks caused by abrupt cooling of molten

material in PBF-LB/M the leads to a reduction in time and cost in 25%.

Energy industry

Optimized geometry using PBF-LB/M leads to 40% less weight in sealing for gas & steam turbines in nickel superalloys.

GFM as industrial end user presents **2** case studies

for application in Aerospace & Energy sector

- Feasibility Study
- Process Optimization/Validation
- Training on the job,
- Delivery of "Recipe" for a serie-production
- Partnership for Funded Projects

Thanks for Attention

www.atc-additive.com

francesco.stortiero@atc-additive.com

PARTNERED BY

