

Tecnologie additive - una opportunità da cogliere

Paolo Calefati Contatti Paolo calefati@primapower.com

12/04/18, Torino

Index

- Introduzione Prima Industrie S.p.A.
- Industria 4.0
- Prima Additive products
- Analisi casi ENEL
- Caratterizzazione processo
- Caso studio: AISI 316L
- Sviluppo collaborazione su AM Repairing
- Componenti per macchine di taglio laser per Prima Industrie in collaborazione con il fornitore/cliente ELLENA

Introduzione - Prima Industrie S.p.A.

- ▶ 40 YEARS
- → 18 YEARS LISTED
- + 449.5 €M SALES
- → 1700+ PEOPLE
- ▶ 8 PLANTS
- ▶ 8 R&D CENTERS
- → 13,000 INSTALLATIONS
- **▶ 80 COUNTRIES**

LASER & SHEET METAL MACHINERY

Prima Electro

LASER AND ELECTRONIC TECHNOLOGIES

Introduzione - Prima Industrie S.p.A.

LASER AND SHEET METAL MACHINERY

THE LASER

2D and 3D laser machines for cutting. welding and drilling

THE PRESS

press brakes

THE PUNCH

Servo-electric turret punch presses

Integrated systems

THE SYSTEM

Servo-electric Servo-electric panel benders and and hydraulic bending centers

THE SHEAR

punch+shear

automate your

THE COMBI

Integrated systems punch+laser

THE SOFTWARE

FMC & FMS to Smart solutions to connect your machines and production flow maximize productivity

Prima Electro

ELECTRONICS AND LASER TECHNOLOGIES

CONVERGENT Fiber and CO. Laser sources

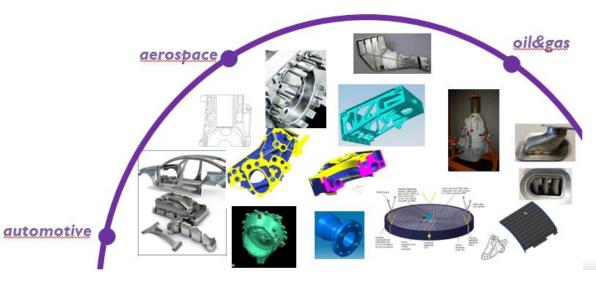
OSAI **Motion Control** and CNC's

Industria 4.0 - dal passato al futuro

Background

40 anni di tradizione nella realizzazione e nell'integrazione di sistemi per la lavorazione della lamiera

- Produzione di sorgenti laser
- Meccatronica e automazione
- CNC e sistemi di controllo ad assi ridondanti



Industria 4.0 - dal passato al futuro

Additive Manufacturing (AM)

- Macchine di nuova concezione per AM
- Alta produttività, elevata precisione e ottime caratteristiche meccaniche del pezzo
- Realizzazione completa del sistema AM: dal CNC al processo AM stesso
- Soluzioni di processo proprietarie brevettate

Industria 4.0 - Progetti Europei finanziati

Progetti Europei finanziati - AM

Principali collaborazioni con centri di ricerca

Principali partner industriali

Industria 4.0 - Progetti regionali finanziati

Progetto regionale: Fabbrica Intelligente Piemonte

Principali collaborazioni con centri di ricerca

Principali partner industriali

STAMP Sviluppo Tecnologico Additive Manufacturing Piemonte

Prima Additive Products

Attività congiunte con il partner di sviluppo ENEL

Additive Manufacturing applications support

- -Assessment delle potenziali applicazioni di additive manufacturing in collaborazione con il partner
- -Additive manufacturing, product design and/or re design
- -prototipazione dei componenti, test meccanici e caratteriazzazione del processo
- -assessment del processo di additive
- -verifica di conformità agli standard
- -assessment della tecnologia additiva idonea

ENEL Repairing applications

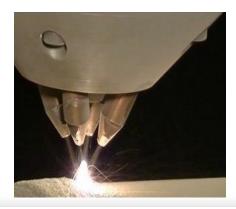
KPI

- •Riparazione in loco
- •Miglioramento delle perfomance del materiale
- •Minore lead time in fase di riparazione

Prima Additive- test per reparing

Processo tecnologia additive DeD

- Sistema gantry a tre assi cartesiani
- Volume di lavoro: 1000x750x500 mm³
- Glovebox (possibilità di lavorare in atmosfera inerte)
- CNC by Prima Electro dedicato AM
- Laser in fibra (P_{max} =3kW, λ =1070 nm) by Prima Electro
- Testa di deposizione
- Distributore di polvere



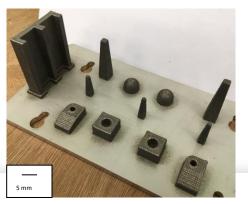
Sistema di deposizione

- Robusto sistema a 4 ugelli coassiali
- ø spot polveri: 3-4 mm
- Regolazione manuale del fascio laser
- Monitoraggio della melt pool monitoring (camera coassiale)
- Flusso di polvere stabile
- Portata di polvere variabile (0,4 30 g/min)

Esempi di casi studio in AISI 316L

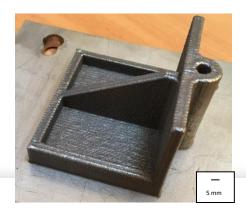
Realizzazione pezzi per AM e repairing

Applicazione industriale: parte finale di uno stampo per fusione.


Criticità: <u>utilizzate due diverse</u> <u>tecniche di scansione e</u> <u>riempimento tra setto centrale e</u> <u>perimetro esterno (perfetta</u> <u>sovrapposizione tra le due)</u>

Applicazione industriale: riproduzione di una pala per turbina aeronautica

Dimensioni: 74x54(base)x40mm³

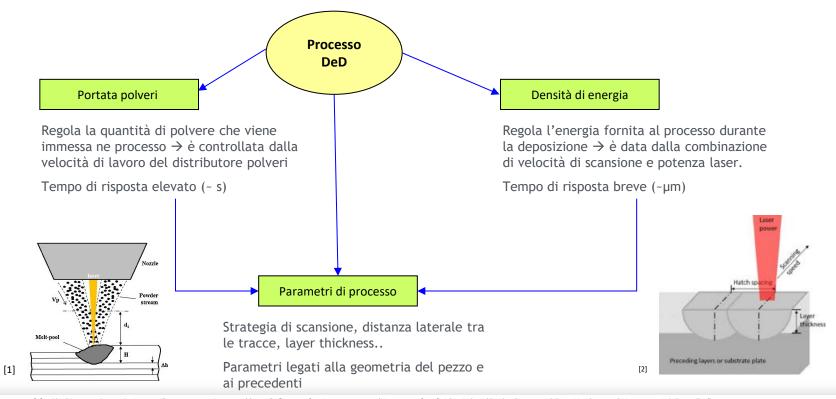

Criticità: <u>realizzazione di</u> <u>una superficie curva</u> <u>omogenea e utilizzo di</u> <u>pareti sottili</u>

Geometrie dimostrative: feature rappresentative delle parti di alcuni casi studio relativi al progetto

Dimensione muro: 50x12 (base)x100 mm³

Criticità: <u>ciascun elemento</u> <u>realizzato presenta problematiche</u> <u>diverse (dimensioni ridotte, pareti</u> <u>verticali o superfici inclinate...</u>)

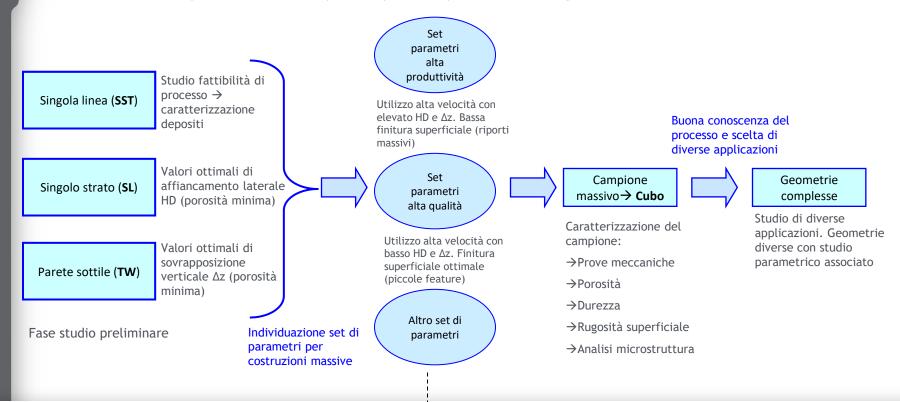
Geometria dimostrativa:


realizzazione di una staffa automotive, modificata per realizzazione con DD. Dimensioni: 40x50(base)x28 mm³

Criticità: <u>mantenere</u> planarità della superfici, inclinazione del braccio e particolari anche di dimensioni ridotte.

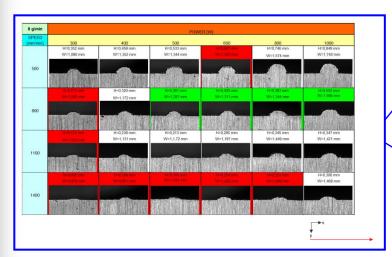
Metodologia daratterizzazione processo DeD

Quali fattori influenzano maggiormente il processo di deposizione



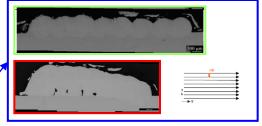
Caratterizzazione processo DeD

Elementi caratteristici processo → densità di potenza, portata di polvere e elementi geometrici

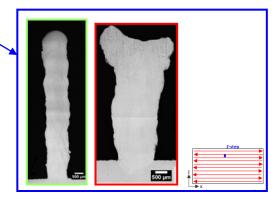


Caso studio: AISI 316L

Caso studio applicativo con polvere AISI 316L, granulometria 50-150 µm


Fase di studio preliminare

Analisi in collaborazione con Politecnico di Torino

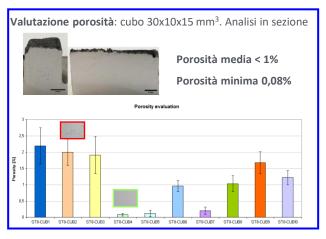


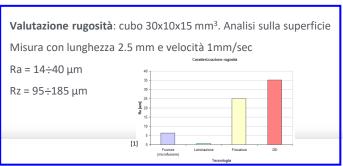
Finestra di fattibilità processo → studio geometrico in sezione

- •Larghezza media della traccia = 1÷ 1,4 mm
- •Altezza media di una traccia = 0.9÷1,4 mm

Valutazione HD ottimale → 0.7 ÷ 1.0 mm

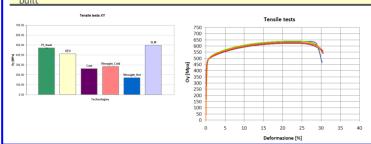
Definizione di set di parametri di riferimento su cui effettuare lo studio delle proprietà meccaniche





Caso studio: AISI 316L

Fase di studio proprietà meccaniche



Valutazione proprietà meccaniche: campioni di trazione lavorati
meccanicamente

σ_y [MPa]	UTS [MPa]	ε _R [%]	
405-415	620-660	32-40	
262	552	55	
170	480	40	
255-310	525-623	30	
495-500	495-500 610-650		
465-490	625-690	14-32	
SLM	750 700 650 600 550	ests	
	405-415 262 170 255-310 495-500 465-490	405-415 620-660 262 552 170 480 255-310 525-623 495-500 610-650 465-490 625-690	

[2] Yadollahi, Shamsaei, Thompson, Seely – "Effects of process time interval and heat treatment on the machanical and microstructural properties of direct laser deposited 316L stainless steel"

[3] Li, Liu, Shi, Du, Xie – "316L stainless steel with gradient porosity fabricated by selective laser melting"

Analisi casi ENEL

Informazioni riguardo ai diversi casi studio – fornite da ENEL

Foto	Materiale	Dimensioni e peso	Failure	N° pezzi	Nuovo o riparato	Tipologia di macchina
	Basso legati/ Inox	< 300 mm < 10 kg Ra 1.6 um su parti di accoppiamento	Cricche (fatica alta temperatura), corrosione uniforme	N° 20 per ogni Turbogas ogni 50000 ore 50 Turbogas	Nuovo (no riparazioni)	Direct energy Deposition Macchina cartesiana 3+2 assi
	Leghe di acciaio/inox trattabili in additive. In attesa eventuale valutazione PoliTO	Dimensioni e peso compatibili con tecnologia additive	Necessaria asportazione di materiale in zona cricca. Problema: come supporto la nuova deposizione? Contro corrosione uniforme, deposizione di strati maggiori	Numero pezzi limitato, costo tecnologia additive elevato. Dipende da costo pezzo	Perché al momento non vengono riparati? Costo limitato?	

Commenti e considerazione sui casi studio, con richiesta di chiarificazione di alcuni punti – da parte di Prima

Valutazione preliminare da parte di Prima riguarda alla tecnologia coinvolta

Possibile modello di business per AM repairing

- Macchina dedicata ad applicazioni AM per repair 5 assi cartesiani → Elevata precisione (0.1mm)
- Monitoraggio di processo integrato
- Servizi al cliente customizzati → Repairing Hub

Componenti per macchine di taglio laser Prima Industrie in collaborazione con il fornitore/cliente ELLENA

KPI

- •Design for additive per l'ottimizzazione funzionale delle le teste di taglio laser
- •Fornitura degli spair parts, soprattutto per teste e componentistica optoelettronica → diminuzione dei magazzini soprattutto per componenti datati

www.prima-additive.com