ADDITIVE MANUFACTUTING CONFERENCE ADD&PROCESS

The Hybrid Machine Solution From IBARMIA

C0**2**

IBARMIA Who and where we are

IBARMIA Our product

MOVING COLUMN Machining Centres

IBARMIA Our product T series Machining Centres

C0

IBARMIA Our product

MACHINES FOR CIRCULAR PIECES

Why IBARMIA develops a solution for additive manufacturing?

TECHNOLOGICAL PLAN OF IBARMIA.

•Unmanned machine Automatization solutions for T and ZVH series

Multiprocess capabilities

•Smart machine. Industry 4.0

Adding new functionalities:

Intelligent functions

Additive manufacturing appears as an opportunity??

General AM market New potencial customers

IBARMIA Why AM in Ibarmia?

Additive manufacturing market is booming?

Primary Global AM Market

Source: Credit Suisse estimates.

IBARMIA Why AM in Ibarmia?

NEW MARKETS FOR IBARMIA??

Aeronautic:

- Manufacturing of some specific turbine components.
- Repairing of turbine blades.

Mould and Die:

- Repair of defects during machining or in-service.
- Anti-wear coatings on tool steels.

Energy

- Manufacturing of some specific turbine components. HYBRID MANUFACTURING
- Repairing of turbine blades.

Repairing of Damaged Impeller

IBARMIA Working team. The Strength of Collaboration

IBARMIA Working team. The Strength of Collaboration

Basic Research

UNIVERSITY OF BASQUE COUNTRY, UPV/EHU

- Development of models for predicting the deposited geometry during LMD process for different materials.
- Development of thermal model for LMD process.
- Optimization of process parameters.
- Characterization of deposited material properties

TECNALIA RESEARCH & INNOVATION

- Analisis of different AM Technologies and solutions
- Development of monitoring and control strategies
- Development of 5 axis strategies for AM + Machining

IBARMIA • IBARMIA INNOVATEK, S.L.U

Integration the LMD head and pheripheral accesories into the CNC machine

- Validation of the Hybrid machine into a real industrial environment
- Product Commercialization

G0

IBARMIA Analisis of differente AM technologies

	EBM/SLM	LMD-p	LMD-w	EBAM	WAAM
Integrable in M-T	No	Yes	Yes	No (<u>vacuum</u>)	Yes
Productivity	Low (0,1-0,2 kg/h)	Medium (~2 kg/h)	Medium (~2 kg/h)	High (~8 kg/h)	High (~8 kg/h)
Material efficiency	High	High (~30%, if recycled 90%)	High (90% with finishing)	High (90% with finishing)	High (90% with finishing)
Part integrity	Porosity	High	High	High	High
Part complexity	Very High	Medium-high	Medium-high	Low-Medium	Low-Medium
Cost	High	High	High	Very High (vacuum)	Low
Part Size	Small	Big	Big	Big	Big
Simplicity	Simple (co-axial)	Simple (co-axial)	Need of wire orientation	Need of wire orientation	Need of wire orientation
Heat distortion	Low	Low	Low	High	High
Accuracy	Medium-High	Medium	Medium	Low	Low

ADITIVE MANUFACTURING TECHNOLOGIES

IBARMIA'S

PRODUCT RANGE ZVH multiprocess

Analyze different technologies to choose the one fits better with our machine

Add additive capabilities not loosing machining capabilities

ADD+PROCESS maximun versAtility

IBARMIA Analisis of differente AM technologies

Why LMD-p (Laser Metal Deposition) Technology?

Advantages of LMD over other AM technologies:

- **Ease of integration** into a machining centre.
- **"Simple" programming** thanks to the use of powder: no need of wire orientation.
- **Low heat source** in comparison with AM processes based on arc welding: Lower thermal distortions.
 - Higher accuracy than AM processes based on arc welding.
 - High part integrity.

IBARMIA LMD head integration

Docking Versus Fixed supply ducts

- ☐ The **fixed supply ducts** solution brings the following **advantages over the docking option**:
 - ✓ ZERO intrusive to machining
 - ✓ Real 5 axis AD manufacturing
 - Easy adaptation to changes in LMD equipment requirements
 - ✓ **Flexibility** to implement other laser based processes (surface treatment, cutting, welding...)
 - Reliability
 - ✓ Quality/price balanced

IBARMIA Mechanical design

ZVH 45/L1600 MULTIPROCESS ADD+PROCESS

Milling / turning and laser cladding capacities in a moving column machining center

TURNING, MILLING AND ADDITIVE MANUFACTURING

IBARMIA Mechanical design

LMD Peripheral equipment

Main Equipment

- 3 kW power Fiber Laser Rofin FL 030
- Discrete coaxial nozzle Precitec YC52
- Powder feeder Sulzer Metco Twin-10C

Auxiliary equipment

Chiller, shielding and carrier gas installation

Consumables

- Powders: Tool steel, Ni based alloys, ceramic, ...
- Inert gas for shielding and carrier: Ar, He, Ni

IBARMIA Process research

Optimization of process parameters.
 Development of control strategies
 Development of 5 axis strategies for AM
 + Machining

your machine-tool point

Machine Video

IBARMIA Hybrid machine solution from IBARMIA

ZVH MultiPROCESS Machine + ADDitive LMD Equipment

ADD&PROCESS Hybrid Machine

- □ Full 5 axis in machining and LMD-p
- ☐ Multiprocess machining performance respected 100%
- Switching between LMD and Machining **totally automated** (HSK + Pick Up for LMD head)
- **LMD**, a completely integrated **modular option** of the Multiprocess machine
- ☐ Use of the whole machining volume for AM operations. **Available in our complete** machine range. (1.100mmx1.300mmx12.000mm)

IBARMIA Future works

- Isolation and recovery of excess powder:
 - Automated powder recovery system for recycling and reusing it and obtaining a 100% of material efficiency

Actual "manual" recovery solution

- Development of control loops to control the process by introducing new sensors:
 - Power/temperature control in order ensure evenly grow per layer deposited and consistency in micro structure.
 - Monitoring of deposited geometry by using 3D laser scanning systems.
- Development of 5 axis complex strategies.
- Integration of databases to control with optimum process parameters for different materials.

THANKS FOR YOUR ATTENTION!

See these parts and the Hybrid machine at HALL 5, STAND C10-D07

(Live demonstrations every 2hours)

AISI 316L, P= 720W, f= 750 mm/min, m=18 g/min

Blade direct manufacturing

