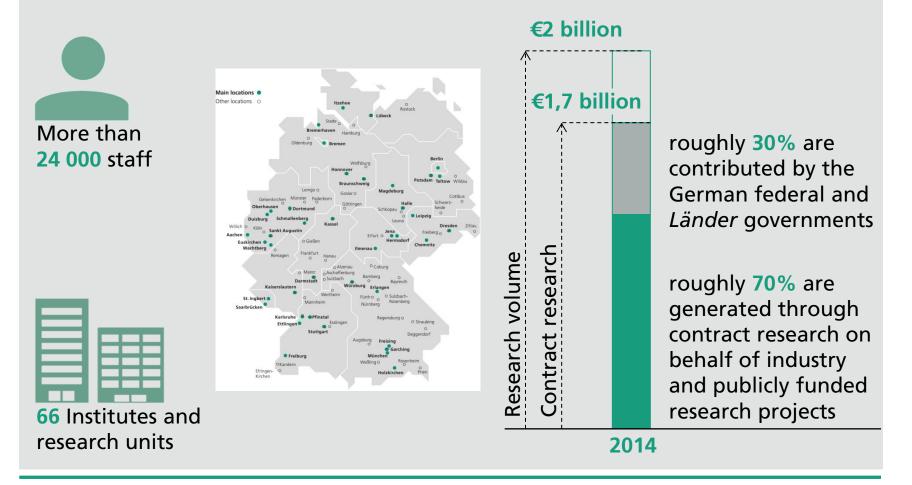
MATERIAL EFFICIENCY POTENTIALS OF INNOVATIVE PRODUCTION METHODS

Dr.-Ing. Bernhard Mueller

Spokesman, Fraunhofer Additive Manufacturing Alliance

The Fraunhofer-Gesellschaft



- Promotes and conducts applied research
- In an international context
- To benefit private and public enterprise
- Is an asset to society as a whole
- Our Customers
 - Industry
 - Service Sector
 - Public Administration

The Fraunhofer-Gesellschaft at a Glance

Applied research for immediate utility of economy and benefit of society

The Fraunhofer IWU Profile

- Founded in 1991
- About 620 employees
- €41,5 million annual budget
- Locations in Chemnitz, Dresden, Augsburg and Zittau

Research under the heading "Resource-efficient Production"

Scientific fields

- Mechatronics and lightweight structures
- Machine tools, production systems and machining
- Forming technology and joining

The Fraunhofer-Gesellschaft Fraunhofer Alliances

The Fraunhofer Alliances facilitate customer access to the services and research results of the Fraunhofer-Gesellschaft. Common points of contact for groups of institutes active in related fields provide expert advice on complex issues and coordinate the development of appropriate solutions.

Adaptronics (IWU)

AdvanCer

Ambient Assisted Living

AutoMOBILE Production (IWU)

Additive Manufacturing (IWU)

Battery

Building Innovation

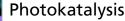
Big Data

Cloud Computing

Cleaning Technology

Digital Cinema

Embedded Systems


Energy

Lightweight Structures (IWU)

Nanotechnology

Polymer Surfaces

Simulation (IWU)

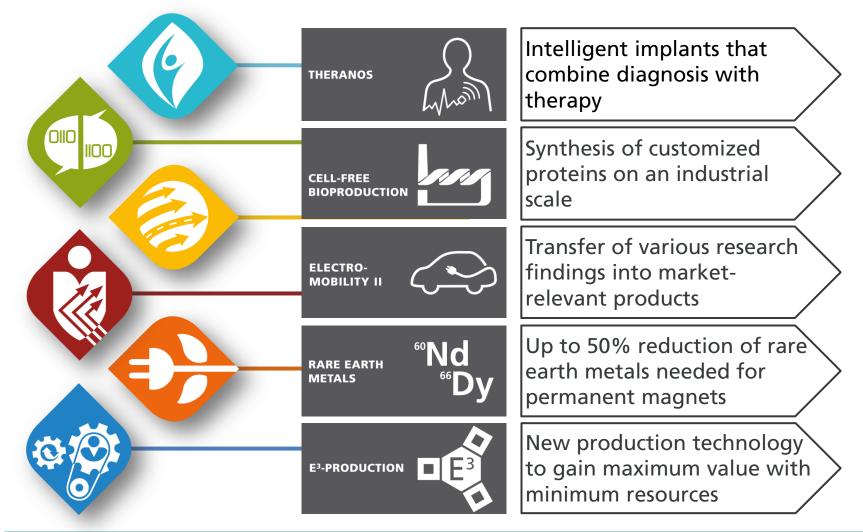
Space

Traffic and Transportation

Water Systems (SysWasser)

Vision (IWU)

The Fraunhofer-Gesellschaft Fraunhofer Additive Manufacturing Alliance


Objectives

- Collaborating closely with national and international partners
- Developing new rapid strategies, concepts, technologies and processes
- Enhancing performance and competitiveness of SME
- Business areas
 - Engineering
 - Technologies
 - Materials
 - Quality

Central office Fraunhofer IWU

The Fraunhofer-Gesellschaft Lighthouse projects

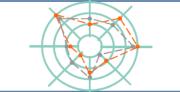
The Fraunhofer-Gesellschaft Lighthouse project: E³-Production

- From "maximum profit with minimal capital investment" towards "maximum value creation with minimal use of resources"
- Mission: contribution to
 - the national sustainability strategy
 - the establishment of production research skills into the E³-concept
 - strengthening the production engineering expertise inside the Fraunhofer-Gesellschaft

- Involved Fraunhofer Institutes: FIT, IBP, ICT, IFF, IGB, ILT, IML, IPA, IPK, IPT, IWU, UMSICHT
- Project leader: Prof. Putz , Fraunhofer IWU

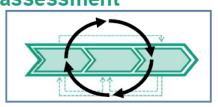
The Fraunhofer-Gesellschaft

E³-Production: Approach within the project


Analyze of the process chain

Key questions

- Analyze state-of-the-art process chain
- Material and geometry of the reference components
- Borderline of the scope of the balancing
- Analyze process chain with additive manufacturing

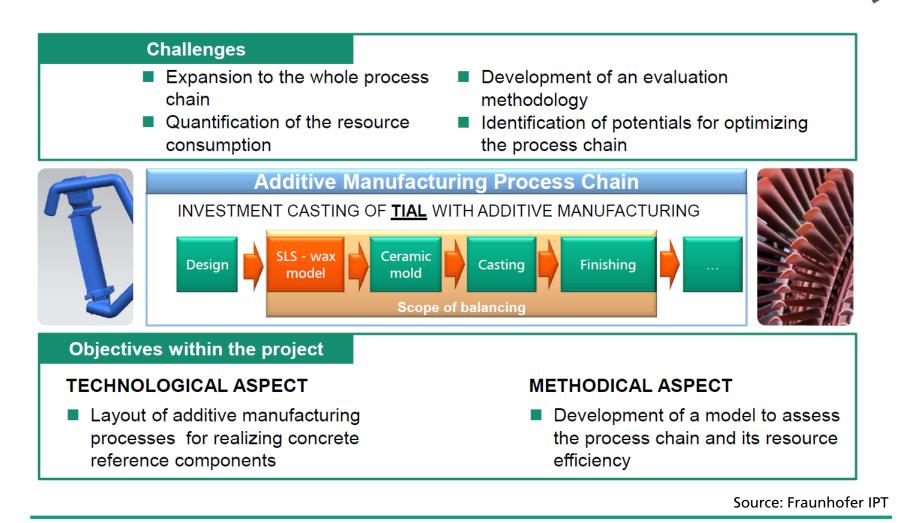

Assessment of the resource efficiency

Key questions

- Identification of relevant resources drivers
- Quantification of all necessary resources
- Assessment of resource needs of single processes

Holistic assessment

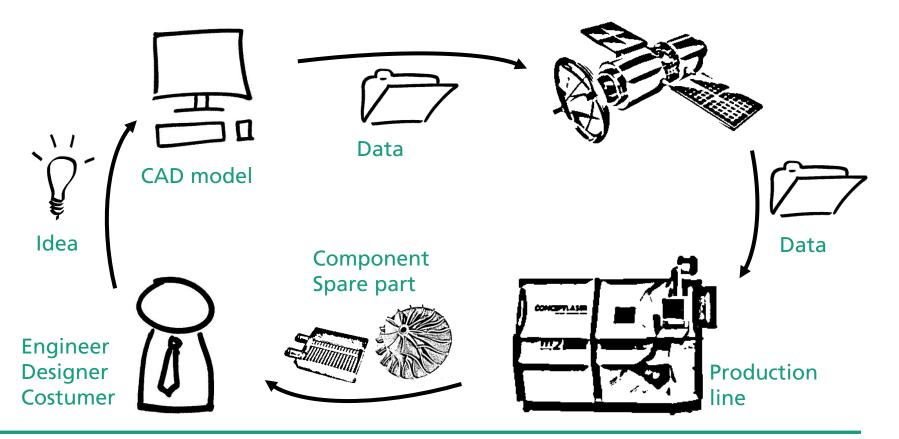
Key questions


- Development of appropriate assessment tools and methods
- Holistic assessment of resource needs

Source: Fraunhofer IPT

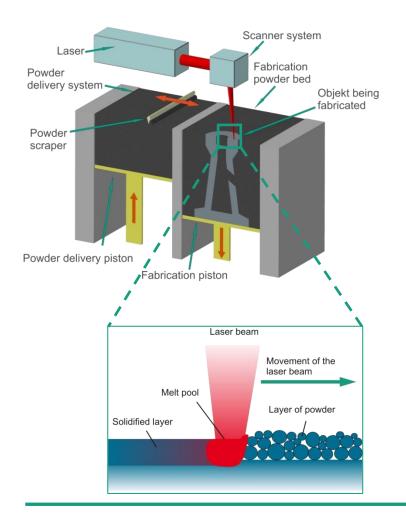
The Fraunhofer-Gesellschaft

E³-Production: Shorten process chains

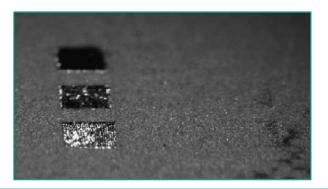


E³-PRODUCTION

Global Trends


Individual, flexible and ressource efficient products

Digitalization of value added chain


Global Trends Key Technology: Additive Manufacturing

© Fraunhofer IWU

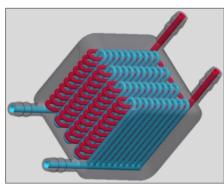
Main advantages

- Short time to product
 - no tools and NC programming
- Freedom of shape
 - Lightweight design
 - Functional integration
- Material diversity

Global Trends One Approach

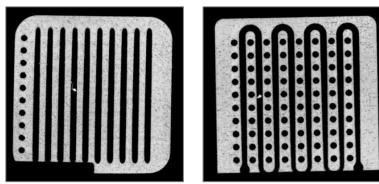

- Additive Manufacturing
 - The 3D revolution for product manufacturing in digital age
- Objectives
 - Placing industry-specific, additively manufactured products successfully on international markets
 - Cost reduction > 20%
 - Performance increase > 20%
 - Sustainable process chains and customer-supplierrelationship with complete value creation in Germany
 - Interlinking science and industry to a driver of innovation

Source: Fraunhofer IWS / AGENT-3D e. V.



Engineering / Component development

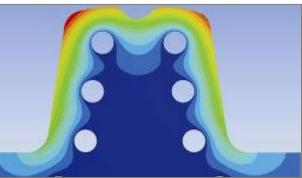
Trends


- Extreme lightweight design, downsizing / miniaturization
- (Mass) Customization / individualization
- Integral part design / functional integration
- Full-strength materials from all technically relevant metal alloy groups
- Example: Innovative heat exchanger

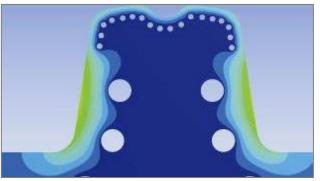
3D CAD model

Additively manufactured parts

Evaluation / inspection by μ CT scan


Production tooling

Trends


- Highly efficient, real-time cooling / thermal management
- Integration of sensors in dies and moulds
- Load case oriented and structured design of tooling
- Example: Tooling for hot sheet metal forming
 - forming press locking time reduced by 50 % → total cycle time reduced by 20%
 → energy consumption in typical car body production (reference plant) reduced by 245 MWh (equals 146 t CO₂)

Press hardening tooling segment

Conventionally drilled cooling bores

conformal cooling channels (design for AM)

Medical engineering

Trends

- Customized, patient-specific implants
 - Based on medical imaging data like CT or MRI
 - Tool-free manufacturing in medically approved materials
- Functional integration in implants
- Example: AktiLoc Implant with integrated shape memory actuators
 - Homogeneous and stable fixation of cement-less hip stems
 - Increase the primary stability by an optimal force distribution at the bone-implant interface using Shape Memory Alloy (SMA) elements

Medical engineering

Example: MUGETO® – Implant with functional channels and cavities

- additively manufactured by Laser Beam Melting in titanium TiAl6V4 ELI
- macro-porous surface structures → osseo-integration
- inner cellular structures \rightarrow stiffness adaption to bone
- channels and cavities → drug depot, endoscopic inspection, filling gaps, …

Additive Manufacturing

Necessary adoption steps for wide use in production

Challenges for AM	Necessary Steps	Fraunhofer contribution
Missing technical standards	Standardisation	Contributing to ISO activities, e.g. through the Association of German Engineers VDI
Reproducibility	Quality control systems / in-situ feedback control systems	Various R&D activities together with the German Laser Beam Melting machine manufacturers
Costs	Gained productivity	Development of High Power Laser Beam Melting Machines (1 kW Laser) and novel scanning strategies
Education with regard to AM design	Widely spread teaching of AM principles at universities / colleges	Implementing AM principles in lectures at Fraunhofer-linked universities
Material variety (e.g. carbon steel, copper, ceramics)	Material and process development	R&D activities with regard to processability of more material types and alloys

Additive Manufacturing

A Fraunhofer perspective

- So far
 - AM technologies are prepared for industrial use
 - There is a large variety of different technologies picking the right one is crucial to succeed
 - Additive Manufacturing will not replace other technologies:
 - it is a complementary manufacturing method
 - it is able to extend the possibilities and add value to products
 - A profitable use of AM, most often depends on a different way of thinking:
 - This may affect product design as well as the overall production process
 - Development will be more a continuous evolution than a disruptive revolution
 - Fraunhofer is active in many fields of AM and looking forward to cooperation with industries willing to adopt AM technology



Fraunhofer Direct Digital Manufacturing Conference DDMC Berlin (Germany), March 16 and 17, 2016

- SCOPE: Encouraging dialogue!
- Range of topics:
 - Product Development
 - Technologies
 - Material
 - Quality
 - Innovative and visionary approaches
- Keynotes:
 - Prof. Boris Chichkov, Laser Zentrum Hannover
 - Dr. Richard Bibb, Loughborough University
 - Dr. Tommaso Ghidini, ESA
 - Dr. Martin Hillebrecht, EDAG
 - RA Prof. Dr. L. Grosskopf LL.M.Eur., Uni Bremen
 - Wouter Gerber, Aerosud (Pty) Ltd, Südafrika
- More information: <u>www.ddmc-fraunhofer.de</u>

DDMC 2016 | BERLIN | MARCH 16-17, 2016

2. CALL FOR PAPERS – FRAUNHOFER DIRECT DIGITAL MANUFACTURING CONFERENCE 2016

MATERIAL EFFICIENCY POTENTIALS OF INNOVATIVE PRODUCTION METHODS

Dr.-Ing. Bernhard Mueller

Group Manager »Additive Manufacturing «

Spokesman Fraunhofer Additive Manufacturing Alliance

Fraunhofer Institute for Machine Tools and Forming Technology IWU

Postal address:		Visitor address:
Reichenhainer Str. 88		Noethnitzer Str. 44
09126 Chemnitz		01187 Dresden
Germany		Germany
Phone:	+ 49 (351) 4772-2136	
Fax:	+ 49 (351) 4772-2303	
E-Mail:	bernhard.mueller@iwu.fraunhofer.de	

Fraunhofer