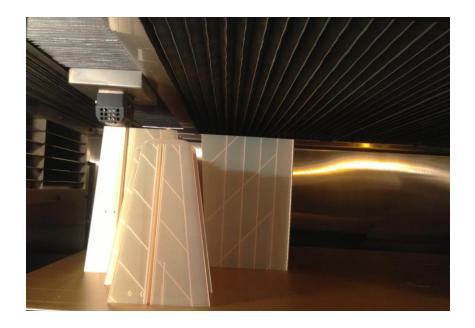


29 Gennaio 2015

Dr. Emanuele D'Addario edaddario@energygroup.it

We help our customers to growth up.

Emanuele D'Addario DDM Business Development


Agenda

- Introductions
- What Is FDM?
- Applications
- Software Introduction
- Special Questions

What Is FDM?

- Technology
- Materials
- Machines

۰

FDM Material Value

 Production Grade Thermoplastics

High Accuracy

- Excellent Mechanical And Thermal Properties
- Capable Of End-use Part Production
- Stable Material Properties Lead To Accurate Parts
- Accuracy Up To +/- .089 mm Or +/- .0015 mm Per mm

- Stable Materials
- Accurate Assessment Of Design, Regardless Of Environment
 Accurate Functional Testing Over Time

• Repeatability

- Stable And Predictable Materials For Repeatable Results
- Enables DDM (Direct Digital Manufacturing) Applications

Fortus 900MC

- 914mm X 610mm X 914mm Build Area
- Widest Range Of Thermoplastics
- Three Layer Thicknesses
 - 0.178mm
 - 0.254mm
 - 0.330mm
- Good Accuracy And Repeatability
 - ± 0.090 mm Or ± 0.0015mm/mm

Standard Materials

ABS-M30

- 6 Colors Available
- Great For
 - Prototypes

ABS-ESD7

- Electrical Conductivity
- Great For
 - Electrical Assembly Tooling

ASA

- UV Resistant
- Best Material For Light Weight Parts
- Great For
 - Parts Exposed To Sunlight

Engineered Materials

Nylon 12

- Most Flexible FDM Material
- Highest Impact Resistance
- Great For
 - Shop Floor Tooling
 - End Use Parts

PC-ABS

- Good Ascetics
- High Impact Resistance
- Great For
 - End Use Parts
 - Assembly Fixtures

Engineered Materials

PC

- High Tensile And Flexural Strength
- Moderate Heat And Chemical Resistance
- Great For
 - High Requirement Prototypes
 - Manufacturing Tools
 - Wind Tunnel Testing

PC-ISO

- Good Ascetics
- High Impact Resistance
- Great For
 - End Use Parts
 - Assembly Fixtures

Performance PPSF Materials

- Highest Chemical Resistance
- High Temperature (189C HDT)
- Great For
 - Chemical Exposed Parts
 - Special Applications

ULTEM 9085

- High Strength
- High Temperature (153C HDT)
- FST And V-0 Rating
- Great For
 - Manufacturing Tooling
 - End Use Parts

Performance **ULTEM 1010** ٠ Materials •

- **High Stiffness**
- **High Chemical Resistance**
- High Temperature (213C HDT) ٠
- **Biocompatibility** (ISO10993) ٠
- Food Grade (NSF-51) •
- Low Thermal Expansion (47 Mm/($M \cdot ^{\circ}c$)) ٠
- **Great For** •
 - **High Temperature Applications** •
 - Composite Tooling •
 - End Use Parts •

Applications

Functional Prototypes Metal Forming Tools
Thermoforming Tools
Casting
Composite Tooling
Jigs and Fixtures
Wind Tunnel Testing

Functional Prototypes

Traditional Use Of All Additive Manufacturing

- Use The Final Production Material
- Quickly Produce And Test Designs
- Reduce Time To Market
- Fully Functional Parts

End Use Parts

Great for

- Bridge To Production
- Bridge To End Of Life
- Customized Products
- Short Production Runs
- Otherwise Impossible Components

Metal Forming Tools

Process

- Tool Design
- Build Tool From Suitable Material
- Finish Tool As Desired
 - Important For Thicknesses Less Than 2mm
- Form Metal Directly On FDM Tool
- No Need To Catalog Tool
 - Quick To Reproduce

Metal Forming Tools

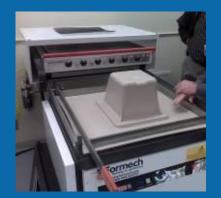
Limits

- Maximum Compressive Strength Varies By Material
 - ABS ~ 200 Bar
 - PC ~ 400 Bar
 - Ultem9085 ~ 900 Bar
- Great For Short Runs Of Parts
 - 1-100 Parts
- Tested With Multiple Processes
 - Hydro Forming
 - Stamping
 - Stretch Forming
 - Rubber Pad Press

Metal Forming Tools

Design Considerations

- Spring Back Is Less Than Steel Tooling
- Only Put Material Where You Need It
- Deep Draws May Require Intensifiers


Vacuum Forming Tools

Process

- Design Tool
 - No Need For Drilling Air Passages
- Build Tool
- Finish As Desired
 - Thin Sheets Could Show FDM Patterns
- Produce Parts



Vacuum Forming Tools

Limits

- Temperature Limits Depend On Material
 - ABS-95c
 - PC- 138c
 - ULTEM 9085 153C
 - ULTEM 1010 214C
- Great For Short To Medium Runs
 - 1-1,000
- Cycle Times Are Increased Vs Metallic

Vacuum Forming Tools

Design Considerations

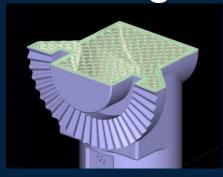
- General Tooling Design
- Natural Porosity Saves Time/Money
 - Vacuum Passages Are Set In Insight
- Vacuum Will Flow In Z More Than X-Y

Investment Casting

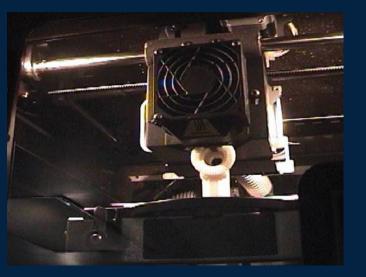
Process

- Produce Patterns Directly From FDM
- Finish As Desired
- Add FDM Part To Tree
- Coat With Ceramic Burn Out FDM Part
- Clean Out Ceramic Pattern
 - Ash Content Is ~3% By Weight For ABS
- Produce Metal Part

Investment Casting


Limits

- Very Small Parts Are Better Produced With Wax
- Burn-out Process Is Different Than Melting Wax
- Best For 1-100 Parts


Investment Casting

Design Considerations

- Parts Should Be Built As Light Weight As Possible
 - Use Insight To Control Density
 - Less Material = Less Ash To Clean Out
- ASA Or ABS Should Be Used

Sand Casting

Process

- Produce Needed FDM Component
 - Match Plates
 - Split Patterns
 - Loose Patterns
 - Core Boxes
- Use Pattern To Create Sand Casting Mold
- Create Metal Parts

Sand Casting

Limits

- Size Limited By FDM Build System
 - Models Can Be Joined To Overcome This
- Compaction Pressure Below 200 Bar For ABS
 - Higher With Other Materials
- Best For Low To Moderate Volumes
 - 5,000+

Sand Casting

Design Considerations

- Correct Material For Compressive Force
 - ABS ~ 200 Bar
 - PC ~ 400 Bar
 - ULTEM 9085 ~ 700 Bar
- Use FDM For The Complex Areas Of Patterns
 - Mold Inserts
- Finish FDM To Reach Required Surface Finish

Composite Tooling

Process

- Design Tool
- Build FDM Tool
- Finish And Seal Tool
- Apply Release Agent
- Produce Parts
- Repeat

Composite Tooling

Limits

- Temperature Limits Depend On Material
 - ABS 95C
 - PC 138C
 - Ultem 9085 168C
 - Ultem 1010 214C
- Full Autoclave Pressure Is OK
- Thermal Expansion Of FDM Materials Must Be Considered
- Great For Short To Medium Runs
 - 1-100 Parts

Composite Tooling

Design Considerations

- Thin Tools Work Well With Envelope Bagging
 - Offsets Should Be Made In Insight
- CTE Of Materials Are Listed On Data Sheets
- Only Put Material Where Needed
 - Less Material = Less Time And Cost

Soluble Cores

Process

- Design Core Based On Internal Geometry
- Smooth And Seal Core
- Lay-up Composites And Consolidate
- Dissolve Core In Cleaning Tank
- Trim And Polish Finial Part As Desired

Soluble Cores

Limits

- Temperature Limits Depend On Material
 - SR30 80C
 - SR100 120C
- Full Autoclave Pressure Is OK
- Thermal Expansion Of FDM Materials Must Be Considered
- Great For Short To Medium Runs
 - 1-100 Parts

Soluble Cores

Design Considerations

- Design Internal Geometry Instead Of Tooling
- Optional
 - Design Flow Passages For Wash-Out
- Use CAD Data To Design Trim Tools

Jigs and Fixtures

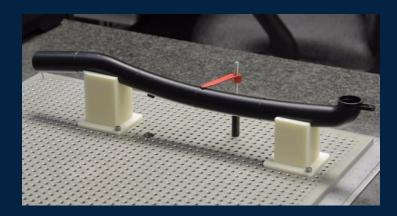
Process

- Used In Many Different Ways
 - Test Fixtures
 - Holding
 - Automation
 - Quality Control

Jigs and Fixtures

Limits

- Limits Are Defined By Material Data Sheets
 - Temperature
 - Strength
 - Stiffness



Design Considerations

- Only Put Material Where It Needs To Be
- Design For Function
- Wear Surfaces Can Be Coated Or Platted To Increase
- Can Be Machined To Achieve Tighter Tolerances

Wind Tunnel Testing

Process

- Design Component
- Build
- Finish As Needed For Surface Quality
 - Sanding, Painting, And Epoxy Fillers
- Test Components
- Repeat As Needed

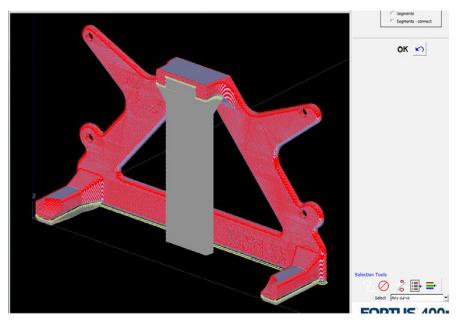
Wind Tunnel Testing

General Considerations

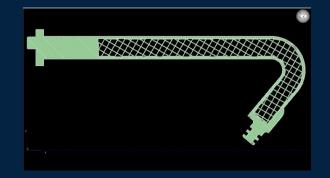
- Low Speed Wind Tunnels
 - Ultra Sonic For Short Times
- Flexural Modulus Of Materials Should Be Noted

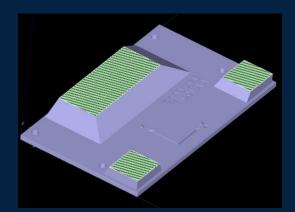
Wind Tunnel Testing

Design Considerations


- Parts should be built for best surface finish
 - Thin Layers
 - Proper orientation
- All Material Data Sheets Have Flexibility Data
- Insert Stiffeners In Long, Thin Features

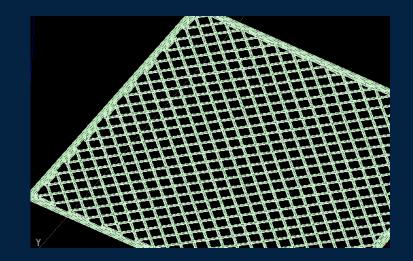
Software Introduction


- Basic Overview
- Different Build Styles
- Design for FDM



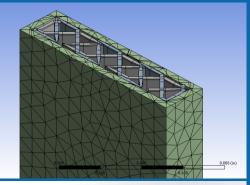
Basic Overview

- Insight Software
- Basic Functions
 - Orientate Part
 - Slice
 - Support
 - Build!
- What It Shows
 - Model And Support Material
 - Toolpaths
 - Build Times And Material Usage



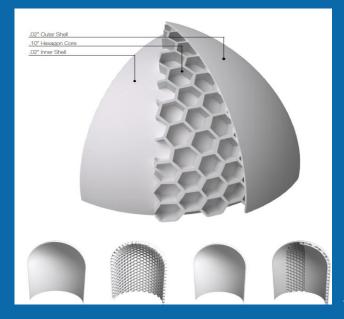
Build Style Differences

- Solid
- Sparse
- Sparse Double Dense
- Inverted Materials


Design For FDM

- Self Supporting Angles
 - 45 Degrees
- Thin Walled Tubes
 - Why Offsetting In CAD Is A Challenge
- Thin Walled Tooling


Design for FDM



Add Material Only Where Needed

- Topology Optimization Results Can Now Be Produced
- Complexity Does Not Add Cost

Design for FDM

End Of Arm Tool Example

- Remove Unnecessary Mass
- Create Self-Supporting Angles
- Optimal Mass Distribution
 - Hollow Interior
- Integrated Vacuum Passages